120

The Work Breakdown Structure
and Project Estimation

CHAPTER OVERVIEW

Chapter 6 focuses on developing the work breakdown structure, as well as on intro-
ducing a number of project estimation approaches, tools, and techniques. After study-
ing this chapter, you shalilinderstand and be able to:

» Develop a work breakdown structure.

» Describe the difference between a deliverable and a milestone.

» Describe and apply several project estimation methods. These include the
Delphi technique, time boxing, top-dowstimation, and bottom-up estimation.

» Describe and apply several softvesigineering estimation approaches. These
include lines of code (LOG), function pbianalysis, COCOMO, and heuristics.

GLOBAL TECHNOLOGY SOLUTIONS

The white board in the GTS conference room was filled with multicolor markings
reflecting the ideas and suggestions fitbm Husky Air team. Several empty pizza
boxes were piled neatly in the corner. It had been an all-day working session for the
Husky Air project team. Although it was ldtethe day, the energy in the room was
still high. Everyone felt they were drawing closer to a first draft of the project plan.
Tim Williams stood up and walked overtte electronic white board. Addressing
the group, he said, "It looks like we have just about everything we need, but | would
like to make sure all of the activities or tasks in the systems testing phase are defined
more clearly. Let's start out by identifyildnat deliverables we need to produce as a
result of the testing phase."
Sitaramin paged through his notes and Haéd the team had identified a test
plan and a test results report as part of the project scopeh¥ampject's database
administrator, suggested that the test report summarize not only the results of

GLOBAL TECHNOLOGY SOLUTIONS 121

the system tests, but aletat was tested and howetlests were conducted. The
rest of the team agreed, and Tim wroteSTING PHASH capital letters on the
board and thedeliverable: Test Results Repaortderneath it. Yan then suggested
that the phase needed a milestone. Sitaraaid that the testing phase would not

be completed when the report was finished, but only when the test results were
acceptable to the client. The rest of the team agreed and Tim Mitestone:

Client signs off on test results.

Tim then asked what specific activities@sks the team would have to do to create
the test results report. For the next tenutds, the entire team brainstormed ideas. Tim
dutifully wrote each idea on the board without judgment and only asked for clar-
ification or help spelling a particular word. After working together for only a short
time, the team had already adopted an unwritiée that no one was to evaluate an
idea until after they finished the brainstorming activity. They had found that this
encouraged participation from everyarel allowed for more creative ideas.

After a few minutes, the frequency of new ideas suggested by the team started to
slow. Tim then asked if any of these ideas or suggestions were similar—i.e., did they
have the same meaning or could thegtoeiped. Again, everyone had ideas and sug-
gestions, and Tim rewrote the original listiLine team agreed on a list of activities
that would allow them to develop the test results plan.

"This looks pretty good!" exclaimed Tim. Then he added, "But do all of these
activities have to be followed one after tiither? Or can some of these activities be
completed in parallel by different team members?"

Once again, the team began making suggestions and discussing ideas of how
to best sequence these activities. This only took a few minutes;dsyone could to
see how the testing phase of the projeas taking shape. Tim paused, took a few
steps back, and announced, "Ok, it looks Wedre headed in the right direction.
Now who will be responsible for completing these tasks dmat wesources will
they need?"

Since everyone on the team had a specific role, the assigning of team members
to the tasks was pretty straightforwaBwme of the tasks required only one person,
while others needed two or more. Thantealso identified a few activities where
the same person was assigned to tasks scheduled at the same time. The team's
discussion also identified an importantiety that was overlooked and needed to
be added.

Tim joked that he was glad they were using a white board that could easily be
erased as he carefully updated the am®iand assignments. Then he smiled and
said, "Our work breakdown structure is almost complete. All we need to do now is
estimate how long each of these testing #ietb/will take. Once we have these esti-
mates, we can enter the wdreakdown structure into the project management soft-
ware package we're using to get the scheatudebudget. | think we'll need to review
our project plan as a team at least one rime before we present it to our client. I'm
sure we'll have to make some changes along the way, but | would say the bulk of our
planning work is almost complete."

It was getting late in the day, and tteam was starting to get tired. Ted, a
telecommunications specialist, suggestedtti@t all meet the next day to finalize the
time estimates for the testing phase actgitiHe also asked that before they
adjourned, the team should once again ldgvan action platased upon facts the
team knew to be true, any assumptions to be tested, and what they would need to find
out in order to estimate each of the testing phase activities.

The rest of the team agreed, and they began another learning cycle.

122 CHAPTER 6/ THE WORK BREAKDOW STRUCTURE AND PROJECT ESTIMATION

Things to Think About

1. What are some advantages of a project team working together to develop
the project plan? What are some disadvantages?

2. Why should the project team members not be too quick to judge the ideas
and suggestions provided dugia brainstorming session?

3. How can the concept of learning cycles support the project planning process?

INTRODUCTION

In the last chapter, you learned about defining and managing the project's scope, i.e., j
the work to be done in order to achieve the project's MOV or goal. Defining and
understanding what you have to do is an important first step to determining how
you're going to do the work that has to be done. In this chapter, we will focus on
defining the tasks or activities that need tabgied out in order to complete all of the
scope-related deliverables as promised. Moreover, we also need to estimate or forecast
the amount of time each activity will take #@at we can determine the overall project
schedule.

The Project Management Body of &nledge (PMBOK) area called project
time management focuses on the processes necessary to develop the project schedule
and to ensure that the project is completed on time. As defined in the PMBOK, project
time management includes:

» Activity definition—identifying what activities must be completed in order
to produce the project scope deliverables.

» Activity sequencing-determining whether activities can be completed
sequentially or in parallel and any dependencies that may exist among them.

» Activity duration estimatior-estimating the time to complete each activity.

» Schedule developmenbased upon the availability of resources, the activi
ties, their sequence, and time estimates, a schedule for the entire budget can
be developed.

» Schedule contrel-ensuring that proper progges and procedures are in
place in order to control changes to the project schedule.

In this chapter, we will concentrate on tebthese processes: activity definition
and activity estimation. These are key processes that deserve special attention because
they are required inputs for developing the project network model that will determine
the project's schedule and budget. In the next chapter, you will see how we put this all
together to develop the detailed project plan.

The remainder of this chapter will inttace several important tools, techniques,
and concepts. Avork breakdown structure (WBS) is discussed first. It provides a
hierarchical structure that outés the activities or work that needs to be done in order to
complete the project scope. The WBS atsovides a bridge or link between the
project's scope and the detailed project plat will be entered into a project man-
agement software package.

Today, most project management softevpackages are relatively inexpensive
and rich in features. It is almost unthiiite that anyone would plan and manage a
project without such a tool. Project succdssyever, will not be determined by one's
familiarity with a project management sefire package or the ability to produce nice

THE WORK BREAKDOWN STRUCTURE (WBS) 123

looking reports and graphs. It is the thought process that must be followed before
using the tool that counts! Thinking carefully through the activities and their esti-
mated durations first will make the use of a project management software package
much more effective. You can still creatiee looking reports and graphs, but you'll
have more confidence in what those reports and graphs say.

Once the project activities are defined, the next step is to forecast, or estimate,
how long each activity will take. Although a number of estimation methods and tech-
niques are introduced here. Estimation is not an exact science. It is dependent upon a
number of variables—the complexity of activity, the resources (i.e., people) assigned
to complete the activity, and the tools and environment to support those individuals
working on the activity (i.e., technology, fittes, etc.). Moreoverconfidence in esti-
mates will be lower early in the project because a full understanding of the problem or
opportunity at hand is probably lacking. However, as we learn and uncover new
information from our involvement in thegject, our understanding of the project will
increase as well. Although estimates may have to be revised periodically, we should
gain more confidence in the updated schedule and budget. Even though no single esti-
mation method will provide 100 percent accurattyof the time, using one or a com-
bination of methods is preferable to guessing.

THE WCRK BREAKDO/MN STRUCTURE (VBS)

Work Packages

In the last chapter, you learned how to defind manage the project's scope. As part of
the scope definition process, several tools and techniques were introduced. For
example, the deliverable definition table (DDT) and deliverable structure chart (DSC)
identify the deliverables that must be provided by the project team.

Once the project's scope is defined, the st is to define the activities or tasks
the project team must do to fulfill the scope deliverable requirements. The work break-
down structure (WBS) is a useful tool fieveloping the project plan and links the pro-
ject's scope to the schedule and budget. According to Gregory T. Haugan (2002),

The WBS represents a logical decomposition of the work to be per-
formed and focuses on how the prodsetyice, or result is naturally
subdivided. It is an outline of what work is to be performed. (17)

The WBS provides a framework for develogia tactical plan to structure the
project work. PMBOK originally defined ¢hWBS as a "deliverable-oriented hierar-
chy,” but much debate and confusion has existed as to what a WBS should look like
and how one should be built. Recently, the Project Management Institute formed a
committee to recommend standards for the WBS. That committee recommends that
no arbitrary limits should be imposed because the WBS should be flexible.
Subsequently, the WBS can be used in different ways depending on the needs of the
project manager and team.

The WBS decomposes, or subdivides, thgegt into smaller components and more
manageable units of work called work packages. Work packages provide a logical basis
for defining the project activities and assigning resources to those activities so that all the
project work is identifieqHaugan 2002). A work package makes it possible to develop a
project plan, schedule, and budget and then later monitor the project's progress.

124 CHAPTER 6 / THE WORK BREAKDOW STRUCTURE AND PROJECT ESTIMATION

Project
L‘P Phase

Deliverable

As illustrated in Figure 6.1, a work package
may be viewed as a hierarchy that starts with the
project itself. The project is then decomposed into
phases, with each phase having one or more
deliver-ables as defined in the deliverable definition
table and deliverable structure chart. More

|: Activity/Task
Milestone—Deliverable Cl_]l“piL’liﬂll Specrﬁca”y, each phase Should pro\”de at Ieast one

Milestone—Phase completion

Figure 6.1 Work Package

specific deliverable—that is, a tangible and
verifiable piece of work. Subsequently, activities or
tasks are identified in order to produce the project's
deliverables.

Deliverables and Milestones

One departure from most traditional views of a WBS is the inclusion of milestones. A
milestone is a significant event or achievement that provides evidence that that
deliverable has been completed or that a phase is formally over.

Deliverables and milestones are closely related, but they are not the same thing.
Deliverables can include such things as presentations or reports, plans, prototypes,
and the final application system. A milestone, on the other hand, must focus on an
achievement. For example, a deliverable may be a prototype of the user interface, but
the milestone would be a stakeholder's falracceptance of the user interface. Only
the formal acceptance or approval of tlser interface by the @ject sponsor would
allow the project team to move on to the next phase of the project.

In theory, if a project team succeeds in meeting all of its scheduled milestones,
then the project should finish as planned. Milestones also provide several other
advantages. First, milestones can keep the project team focused. It is much easier to
concentrate your attention and efforts oseaes of smaller, short-term deliverables
than on a single, much larger deliverable scheduled for completion well into the
future. On the other hand, if milestones are realistic, they can motivate a project team if
their attainment is viewed as a success. If meeting a milestone signifies an important
event, then the team should take pleasure in these successes before gearing up for the
next milestone.

Milestones also reduce the risk of a project. The passing of a milestone, espe-
cially a phase milestone, should provideogportunity to review the progress of the
project. Additional resources should be committed at the successful completion of
each milestone, while appropriate plans and steps should be taken if the project cannot
meet its milestones.

Milestones can also be used to reduce risk by actimguxes or proof of con-
cepts. Many times a significant risk assaaibivith IT projects is the dependency on
new technology or unique applications of the technology. A crux can be the testing of
an idea, concept, or technolothat is critical to the project's success. For example,
suppose that an organization is building a data warehouse using a particular vendor's
relational database product for the first time. A crux for this project may be the col-
lection of data from several different legacy systems, cleansing this data, and then
making it available in the relational database management system. The team may
ensure that this can be accomplished using only a small amount of test data. Once the
project team solves this problem on a smaitale, they have proof that the concept or
technique for importing the data from several legacy systems into the data warehouse
can be done successfully. This breakthrocayhallow them to incorporate what they
have learned on a much larger scale. Subsequently, solving this crux is a

THE WORK BREAKDOM STRUCTURE (WBS) 125

milestone that would encourage the organization to invest more time and resources to
complete the project.

Milestones can also provide a mechanfsmquality control. Continuing with
our example, just providing the users withiaterface does not guarantee that it will
be acceptable to them. Therefore, the detign of user interface deliverable should
end only with their acceptance; otherwise, the team will be forced to make revisions.
In short, the deliverable must not only be done, but must be done right.

Developing the WBS

Developing the WBS may require several versions until everyone is comfortable and
confident that all of the work activities have been included. It is also a good idea to
involve those who will be doing the work—after all, they probably know what has to
be done better than anyone else.

The WBS can be quite involved, depending upon the nature and size of the proj-
ect. To illustrate the steps involved, let's continue with our electronic commerce project
example from the last chapter. As you may recall, we created a DDT and DSC to define
the scope of the project. To make things easier to follow, let's focus on only one
portion of the project—creating a document called the test results report. Figure 6.2
provides the DSC that we developed in Chapter 5. As you can see, two
deliver-ables—the test plan and test results report—are to be completed and delivered
during the testing phase of the project.

The DSC defines the phases and delivesafile our project. The next step is to
develop sets of work packages for each of the phases and deliverables. After a team
meeting, let's say that we have identified and discussed several activities that we need to
do in order to produce the test results document:

» Review the test plan with the clientrsd key stakeholders are clear as to what
we will be testing, how we will conduct the tests, and when the tests

v
| 1
| Electronic commerce

‘ Banking project |

B2

‘ Project charter . Evaluate project
Initialize & Close project G
conceptualize & plan Execute & control it s success
- : . | Final project report . :
Busi Project charter & v ' PI 1 . P Project evaluations
usiness case : Formal acceptance
Sismatai project plan | \ s Lessons learned
o e L P e ape Loi=ly) Lo i -
i i
[;
: ; ‘ ‘ : ‘ " o = i Implementation
Analysis Design | | Construction B Testing :
| 1| g
: == F ; o el -] Documentation
Strategic EC plan Logical design | EC application ! ! Test plan 1 et S
; [s = | [1 Tes i [raining program
| Systems proposal Technical design system | est results i i
: l 2 | 1 L M Conversion plan
'
L = _ | '
------------ -

Figure 6.2 Deliverable StructiChart (DSC) for EC Example

126 CHAPTER 6/ THE WORK BREAKDOW STRUCTURE AND PROJECT ESTIMATION

will be carried out. This review may ldene as a courtesy or because we
need specific support from the client's organization and, therefore, must
inform them when that support will be required.

» After we have informed the client that we will test the system, we basically
carry out the tests outlined in the test plan.

» Once we have collected the test results, we need to analyze them.

e After we analyze the results, we ndlked to summarize them in the form
of a report and presentation to the client.

» Ifall goes well, then the client will approve or signoff on the test resylts.
Then, we can move on to the implementation phase of our project. Ifjall
does not go well, we need to address and fix any problems. Keep in mind,
that the test phase is not complete just because we have developed p test
plan and created a test report. The client will sign off on the test results
only if the system meets certain predetermined quality standards.

Figure 6.3 provides an example of a WBfhthe details shown for only the testing
phase of the project. As you can see,WRS implements the concept of a wprk
package for the project, phase, deliverable, task/activity, and milestone components
that were illustrated in Figure 6.1. Thistzadar WBS follows an outline format withja
commonly used decimal numbering system that allows for continuing levels of
detail® If a software package is used teate the WBS, signs in front of each i
can either hide or show the details. For example, clicking on "-6.2 Test
Report" would roll up the details of thisork package into "+6.2 Test Resylts
Report". Similarly, clicking on any item with a "+" in front of it would expand fthat
item to show the details associated with it.

The skills to develop a useful WBS generally evolve over time with practige and
experience. Everyone, experienced or not, should keep in mind the following| points
when developing a WBS.

The WBS Should Be Deliverable-Orienfiegimember, the focus of a project should

be to produce something, not merely on completing a specified number of agtivities.
Although the WBS does not provide for amplit looping, some activities may have

to be repeated until the milestone is achieved. For example, software testihg may
uncover a number of problems or bugs that make the software system unaccegptable to
the client. As a result, these problems will have to be addressed and fixed and the same
tests may have to be conducted agains phocess may be repeated a number of
times (while consuming the project schedahd budget) until the quality standards

are met.

The WBS Should Support the Project's M€ WBS should include only tasks|or
activities that allow for the delivery ofetproject's deliverables. Before continujng
with the development of the project plan, the project team should ensure that the WBS
allows for the delivery of all the project'digerables as defined in the project's scope.

In turn, this will ensure that the peajt is more likely to achieve its MOV.

! Many people prefer to develop a WBS using a chartdgramnd the DSC in Figure3could be esily adapted
by adding the work package levels. Although a graphicSean be visually appealing, it can also become
extremely complex and confusing as more detail is adtiel free to experiment with the WBS. The correct form
will depend on the situath or your preference.

THE WORK BREAKDOWN STRUCTURE (WBS) 127

—().0 EC Bank Project
+1.0° Conceptualize & initialize project
+2.0 Develop charter & plan
+3.0 Analysis
+4.0 Design
+5.0 Construction
—6.0 Testing
+6.1 Test plan

~6.2 Test results report
I
6.2.1 Review test plan with client

6.2.2 Carry out test plan

6.2.4 Prepare test results report and presentation
6.2.5 Present test results to client

6.2.6 Address any software issues or problems

6.2.7 Milestone: client signs off on test results

I
]
I
(]
I
I
]
]
I
|
: 6.2.3 Analyze results
I
]
|
|
1
I
)
1
)

+6.3 Milestone: testing completed
+7.0 Implementation
+8.0 Close project

+9.0 Evaluate project success

Figure 6.3 Work Breakdown Structure

Haugen (2002) also suggests thatib@per cent ruleis the most important criterion in

the developing and evaluating the WBS. The rule states: "Ttidevel decomposition

of a WBS element (child level) must repeas 100 percent of the work applicable to
the next higher (parent) element." (17) In other words, if each level of the WBS
follows the 100 percent rule down to the activities, then we are confident that 100
percent of the activities will have beédentified when we develop the project
schedule. Moreover, 100 percent of the costs or resources required will beedentif
when we create the budget for our project.

The Level of Detail Should gport Planning and ControThe WBS provides

bridge between the project's scope and project plan—that is, the schedule and
budget. Therefore, the level of detail shoalgport not only the development of the
project plan but also allow the project mgaeand project team to monitor and compare
the project's actual progress to the origiplaln's schedule and budget. The two most
common errors when developing a WBS are too little or too much detail. Tieo litt
detail may result in a project plan that overlooks and omits important activities and
tasks. This will lead to an overly optimistic schedule and budget. On the other hand,
the WBS should not be a to-do list of one-hour tasks. This excessive detail results in
micromanagement that can have several rsg@veffects on the project. First, this may
impact the project team's morale becams®st people on projects are professionals
who do not want someone constantly lookinvgr their shoulders. Second, the progress

of each and every task must be tracked. As a result, the project plan will either not be
updated frequently or clericale$t will have to be hired (a cost to the project) just to
keep everything current.

128 CHAPTER 6/ THE WORK BREAKDOW STRUCTURE AND PROJECT ESTIMATION

Developing the WES Should Involve the People Who Will Be Doing theDiork

way to ensure that the WBS has the appropriate level of detail is to ensure that the
people who do the work are involved indisvelopment. A person who has experience
and expertise in a particular area probably has a better feel for what activities need to
be performed in order to produce a paride project deliverable. Although the project
manager is responsible for ensuring thegalistic WBS is developed, the people who
must carry out the activities and tasks may be more committed to the plan if they are
involved in its development.

Learning Cycles and Lessons LearneahGSupport the Development of a WBS
By using the concept of learning cycles, fiteject team can focus on what they know

(the facts), what they think they know (asgptions), and what they need to find out

(research) in order to develop a morefus WBS. Lessons learned from previous

projects can be helpful in ensuring thatWBS and subsequent project plan are realistic
and complete.

PROJECT ESTIMATION

Guesstimating

Once the project deliverables and activitiegehbeen defined, the next step in devel-
oping the project schedule and budget is timege each activity's duration. One of the
most crucial—and difficult—activities in project management is estimating the time

it will take to complete a particulalask. Since a resource generally performs a
particular task, a cost associated with thatigaer resource must be allocated as part of

the time it takes to complete that task. The time estimated to complete a particular task
will have a direct bearing on the projediisdget as well. As T. Capers Jones (Jones
1998) points out:

The seeds of major software disasters are usually sown in the first
three months of commencing the software project. Hasty scheduling,
irrational commitments, unprofessional estimating techniques, and
carelessness of the project management function are the factors that
tend to introduce terminal problems. Once a project blindly lurches
forward toward an impossible deliyedate, the rest of the disaster

will occur almost inevitably. (120)

In this section, we will review several estimation techniques—guesstimating,
Delphi, top-down and bottom-up estimating.

Estimation by guessing or just picking numbers out of the air is not the best way to
derive a project's schedule and budget. tnofwately, many inexperienced project
managers tend to guesstimate, or guess at the estimates, because it is quick and eas'
For example, we might guesstimate that testing will take two weeks. Why two weeks?
Why not three weeks? Or teveeks? Because we are picking numbers out of thin air,
the confidence in these estimates will be quite low. You might as well pick numbers
out of a hat. The problem is that guessinghatestimates is based on feelings rather
than hard evidence.

However, many times a project managegpus on the spot and asked to provide a
ballpark figure. Be careful when quoting ené frame or cost off the record, because
whatever estimates you come up with often become on the record.

PROJECT ESTIMATION 129

People are often overly optimistic ariderefore, their guesstimates are overly
optimistic. Underestimatingan result in long hourseduced quality, and unmet
client expectations. If you ever find yourself being pressured to guesstimate, your first
impulse should be to stall until you haveegh information to make a confident esti-
mate. You may not, however, have that luxurgh&obest approach is to provide some
kind of confidence interval. For example, if you think something will probably take
three months and cost $30,000, provide a confidence interval of three to six months
with a cost of $30,000 to $@W0. Then quickly offer to do a little more research to
develop a more confident eséita. Notice that evehaugh three months and $30,000
may be the most likely estimate, an restie of two to six months was not made.
Why? Because people tend to be optisngstd the most likely case of finishing in
three months is probably an optimistic case.

Delphi Technique

The Delphi technique involves multiple experts who arrive at a consensus on a par-
ticular subject or issue. Although the Delphi technique is generally used for group
decision-making, it can be a useful toal éstimating when the time and money war-
rant the extra effort (Roetzheim and Beasley 1998).

To estimate using the Delphi technique, several experts need to be recruited to
estimate the same item. Based upon inédion supplied, each expert makes an esti-
mate and then all the results are compdfdide estimates are reasonably close, they
can be averaged and used as an estimate. Otherwise, the estimates are distributed back
to the experts who discuss the differences and then make another estimate.

In general, these rounds are anonyrmangseveral rounds may take place until
a consensus is reached. Nafpsisingly, using the Delphi technique can take longer
and cost more than most estimation methodsit can be very effective and provide
reasonable assurance when the stakdsgiteand the margin for error is low.

TimeBoxing

Time boxing is a technique wherebylmx of time is allocated for a specific activity

or task. This allocation is based more on a requirement rather than on just guesswork.
For example, a project team may have (amal only two) weeks to build a prototype.

At the end of the two weeks, work on the prototype stops, regardless of whether the
prototype is 100 percent complete.

Used effectively, time boxing can helpcus the project team's effort on an
important and critical task. The schedulesptge to meet a particular deadline, how-
ever, may result in long hours and pressarsucceed. Used inappropriately or too
often, the project team members become burned out and frustrated.

Top-Down Estimating

Top-down egtimating involves estimating the schedule and/or cost of the entire proj-
ect in terms of how long ghouldtake or how much shouldcost. Top-down esti-
mating is a very common occurrence that often results from a mandate made by upper
management (e.g., Thou shalt completepitogect within six months and spend no
more than $500,000!).

Often the schedule and/orsteestimate is a product of some strategic plan or
because someortieinksit should take a certain amount of time or cost a particular
amount. On the other hand, top-down edfiingecould be a reaction to the business

130 CHAPTER 6/ THE WORK BREAKDOWSTRUCTURE AND PROJECT ESTIMATION

environment. For example, the project may have to be completed within six months
as a result of a competitor's actions or to win the business of a customer (i.e., the cus
tomer needs this in six months).

Once the target objectives in terms of schedule or budget are identified, it is up
to the project manager to allocate percentages to the various project life cycle phase
and associated tasks or activities. Data frogt pajects can be vengseful in applying
percentages and ensuring that the estimatereasonable. It is important to keep in
mind that top-down estimating works well when the target objectives are reasonable,
realistic, and achievable.

When made by people independent from the project team, however, these target
are often overly optimistic or overly aggressiVbese unrealistic targets often lead to
what Ed Yourdon (1999) callsdeath marctproject:

| define a death march project as one whose "project parameters"
exceed the norm by at least 50 pettc This doesn't correspond to the
"military" definition, and it would be a travesty to compare even the
worst software project with the Batadeath march during the Second
World War, or the "trail of teal' death march imposed upon Native
Americans in the late 1700s. Instead, | use the term as a metaphor, to
suggest a "forced march" imposed upon relatively innocent victims,
the outcome of which is usually a high casualty rate." (2)

Project parameters include schedule, staff, budget or other resources, and th
functionality, features, performance requiremser other aspects of the project. A
death march software project means one or more of the following constraints has
been imposed (Yourdon 1999):

» The project schedule has been compressed to less than 50 percent of its
original estimate.

The staff originally assigned or required to complete the project has been
reduced to less than 50 percent.

The budget and resources needed have been reduced by 50 percent or mol

The functionality, features, or other performance or technical requirements
are twice what they should be under typical circumstances.

On the other hand, top-down estimating bara very effective approach to cost
and schedule analysis (Royce 1998). More specifically, a top-down approach may
force the project manager to examine the project's risks more closely so that a spe
cific budget or schedule target can be achieved. By understanding the risks, trade-offs
and sensitivities objectively, the various project stakeholders can develop a mutual
understanding that leads to better estimafitiis outcome, howeverequires that all
stakeholders be willing to communicate and make trade-offs.

Bottom-Up Estimating

Most real-world estimating is made usibgttom-up estimating (Royce 1998).
Bottom-up estimating involves dividing the project into smaller modules and then
directly estimating the time and effortterms of person-hours, person-weeks, or per-
son-months for each module. The work breakdown structure provides the basis for
bottom-up estimating because all of the project phases and activities are defined.
The project manager, or better yet the project team, can provide reasonable time
estimates for each activity. In short, bottap estimating starts with a list of all

SOFTWARE ENGINEERING METRIS AND APPROACHES 131

required tasks or activities and then an estimate for the amount of effort is made. The
total time and associated ctmteach activity provides thebis for the project's target
schedule and budget. Although bottom-upnested is straightforward, confusing
effort with progress can be problematic (Brooks 1995).

Continuing with our earlier exnple, let's assume that after meeting with our soft-
ware testers, the following durations weséimated for each of the following activities:

6.2 Test results report

6.2.1 Review test plan with client 1 day
6.2.2 Carry out test plan 5 days
6.2.3 Analyze results 2 days
6.2.4 Prepare test results report and presentation 3 days
6.2.5 Present test results to client 1 day

6.2.6 Address any software issues or problems 5 days

If we add all of the estimated durationgether, we find that creating the test
results report will take seventeen daylsw did we come up with these estimates?
Did we guesstimate them? Hopefully notlegh estimates could be based on experi-
ence—the software testers may have done these activities many times in the past so
they know what activities have to ben@ and how long eagittivity will take. Or,
these estimates could be based on similar or analogous prbjeaitsgous estima-
tion refers to developing estimates based upon one's opinion that there is a significant
similarity between the current project and others (Rad 2002).

Keep in mind that estimates are a function of the activity itself, the resources, and
the support provided. More specifically, thereated duration of an activity will first
depend upon the nature of the activity in terms of its complexity and degree of struc-
ture. In general, highly complex and unstructured activities will take longer to com-
plete than simple, well-structured activities.

The resources assigned to a particular activit also influence an estimate. For
example, assigning an experienced and wasléd individual to a particular task
should mean less time is required to ctetgpit than if a novice were assigned.
However, experience and expertise are onlygdte equation. We also have to con-
sider such things as a person's level of motivation and enthusiasm.

Finally, the support we provide alsdflirences our estiates. Support may
include technology, tools, training, and the physical work environment.

These are just some of the variableswemust consider when estimating. You
can probably come up with a number of others. Subsequently, estimates will always
be a forecast; however, by looking at and understanding the big picture, we can
increase our confidence in them.

SOFTWARE ENGINEERING METRICSAND APPROACHES

The discipline ofoftwar e engineering focuses on the processes, tools, and methods

for developing a quality approach to developing software (Pressman R&dics

on the other hand, provide the basis for software engineering and refers to a broad

range of measurements for objectively evaluating computer software.

The greatest challenge for estimating an IT project is estimating the time and effort
for the largest deliverable of the project—the application system.

132 CHAPTER 6 / THE WORK BREAKDOWSTRUCTURE AND PROJECT ESTIMATION

THE MYTHICAL MAN-MONTH

The classic book, The Mvthical Man-Month by Fredrick P.
Brooks, was first published in 1975. Brooks worked at
IBM as the manager of a large project that developed the
0S/360 operating system. Although the OS/360 was even-
tually a successful product for IBM, the project was late,
took more memory than planned, and cost several times
more than originally estimated. In fact, the product did not
perform well until after several releases. Based upon his
experience, Brooks wrote a number of essays that were
embodied in his book. As a result of his timeless advice
(and probably due to the fact that some things have not
changed, although the term person-month may be more
appropriate today), a twentieth anniversary edition was
issued. The following are some of Brooks” insights:

B “First, our techniques of estimation are poorly devel-
oped. More seriously, they reflect an unvoiced
assumption which is quite untrue—i.e., that all will
go well.” (14)

B “Third, because we are uncertain of our estimates,

software managers often lack the courteous stub-
bornness of Antoine’s chef (14): Good cooking takes
time. If you are made to wait, it is to serve you bet-
ter, and to please you.” (From the menu of Antoine’s,
a restaurant in New Orleans)

“Fourth, schedule progress is poorly monitored.
Techniques proven and routine in other engineering
disciplines are considered radical innovations in
software engineering.” (14)

“Fifth, when schedule slippage is recognized, the
natural tendency (and traditional) response it to add
more manpower. Like dousing a fire with gasoline,
this makes matters worse, much worse. More fire
requires more gasoline, and thus begins a regenera-
tive cycle which ends in disaster.” (14)

Brooks Law, “Adding manpower to a late software
project makes it later.” (25)

B “Second, our estimating techniques fallaciously con-
fuse effort with progress, hiding the assumption that
men and months are interchangeable.” (14)

Maintenance projects and the installation of packaged software can experien
similar difficulties.

The challenge lies in trying to estimate something that is logical, rather thal
physical, and that is not well defined untietlater stages of the project life cycle.
Scope definition can only provigehigh-level view of what is and what is not within
the scope boundary of the project. Specific requirements, in terms of features al
functionality, are generally not defined until later, during the design phase. In add
tion, the complexity and ¢dnical challenges of impinenting those features are
either unknown or optimistically glossed owerthe early stages of the project. As a
result, estimating an IT project can be like trying to hit a moving target—Hhitting eithe!
one accurately requires continuous adjustments.

As illustrated in Figure 6.4, the first step to accurately estimating an IT applicatior
is determining its size (Jones 1998). In other words, how big is the application
Without getting into too much detail at this point, it should be intuitive that it takes
more effort (i.e., in terms of schedule, resources, and budget) to build a larger syste
than a smaller system. However, the siz¢hefapplication is only one piece of the
estimation puzzle. A good portion of time and effort will be spent on features an
functionality that are more complex. As aul, the greater the complexity, the more
time and effort that will be spent. Constraints and various influences will also affec
the time and effort needed to develop a particular application. These constraints col
be attributes of the application (Jones 19@8nclude the prosses, people, technol-
ogy, environment, and required quality o goroduct as well (Royce 1998). Once the
resources and time estimates are known, the specific activities or tasks can
sequenced in order to create the project's schedule and budget.

Complexity

Figure 6.4 Software Engineering Estimation M !

SOURCE Adapted from Garmus and Herron 1996; Jones 1998,

Royce 1998.

Function Points!

SOFTWARE ENGINEERING METRIS AND APPROACHES 133

Linesof Code (LOC)

Counting the number of lines obde in computer programs is the
most traditional and widely used software metric for sizing the
application product. It is also the most controversial.

Although counting lines of code seems intuitively obvious—a
1,000 LOC Java program will be ten times larger than a 100 LOC
Java program—counting LOC is not all that straightforward. First,
what counts as LOC? Do we include comments? Maybe we
should not because a programmer could artificially boost his or her
productivity by writing one hundred comment lines for every line
of code that actually did something. On the other hand, comments
are important because they tell us what the code should be doing.
This makes it easier to debug and for others to understand what
sections of code in the program are doing.

What about declaring variables? Do they count as LOC? In
dition, experienced programmers tend to wesscode
an novice programmers. After all, an experienced
programmer can write more efficient code, code that does the
same thing in fewer lines of code than a novice programmer
would use. The same can be said for different programming languages. Writing a
program in Assembler requires a great deal more code than writinga giragram
in Visual Basic. In fact, one could argue that counting LOC could encourage
programmers to write inefficient code, espdlgiwhen LOC are used as a productivity
metric. Finally, it is much easier to count the lines of code after a program is written
than it is to estimate how many lines of code will be required to write the program.

The inherent problems of LOC as a mefic estimation and productivity necessi-
tated the need for a better software metric. In 1979, Allan Albrecht of IBM proposed
the idea of function points at a conference hosted by IBM in Monterey, California
(Albrecht 1979) Function points are a synthetic metric, similar to ones used every
day, such as hours, kilos, tons, nautical miles, degrees Celsius, and so on. However,
function points focus on ttfanctionalityandcomplexityof an application system or a
particular module. For example, just as 20 degree Celsius day is warmer than a 10
degree Celsius day, a 1,000 function p@ipplication is larger and more complex
than a 500 function point application.

The good thing about function points is that they are independent of the technol-
ogy. More specifically, functionality and the technology are kept separate so we can
compare different applications that malymay not use different programming lan-
guages or technology platforms. That is, we can compare one application written in
COBOL with another application developed in Java. Moreover, function point analysis
is reliable—i.e., two people who are skilled and experienced in function point

I' A more thorough discussion of function point analysis is provided in Appendix A.

134 CHAPTER 6/ THE WORK BREAKDOW STRUCTURE AND PROJECT ESTIMATION

analysis will obtain function point counts that are the same, that is, within an acceptable
margin of error.

Counting function points is fairly straidhtward; however, the rules can be com-
plex for the novice. It is recommended that anyone serious about learning function
point analysis become certified. Although several function point organizations exist,
the two main ones are the International Function Point Users Group (IFPUG) and the
United Kingdom Function Point Users Group (UFPUG). Both of these nonprofit
organizations oversee the rules, guidelines, standards, and certifications for function
point analysis. In addition, there are resesrat the end of the chapter if you are
interested in learning more about function points.

The key to counting function points is having a good understanding of the user's
requirements. Early on in the project, a function point analysis can be conducted
based on the project's scope. Then a more detailed analysis of the user's requirement
can be made during the analysis and degigrses. Then, funoti point analysis can
and should be conducted at various stages of the project life cycle. For example, a
function point analysis conducted based on the project's scope definition can be used
for estimation and developing the project's plan. During the analysis and design
phases, function points can be used to manage and report progress and for monitoring
scope creep. In addition, a function point analysis conducted during or after the
project's implementation can be useful for determining whether all of the functionality
was delivered. By capturing this inforrwat in a repository or database, it can be
combined with other metrics useful forohimarking, estimating future projects, and
understanding the impact of new methods,sta@chnologies, argest practices that
were introduced.

Function point analysis is based on an evaluation of five data and transactional
types that define the application boundary as illustrated in Figure 6.5.

» Internal Logical File (ILF}—An ILF is a logical file that stores data within
the application boundary. For example, each entity in an Entity-
Relationship Diagram (ERD) would be considered as an ILF. The complex
ity of an ILF can be classified as low, average, or high based on the number
of data elements and subgroups of data elements maintained by the ILF. An
example of a subgroup would be new customers for an entity called cus
tomer. Examples of data elements would be customer number, name,
address, phone number, and so forth. In short, ILFs with fewer data ele
ments and subgroups will be less complex than ILFs with more data ele
ments and subgroups.

» External Interface File (EIF-An EIF is similar to an ILF; however, an
EIF is a file maintained by another application system. The complexity of
an EIF is determined using the same criteria used for an ILF.

< External Input (ER—An El refers to processes or transactional data that
originate outside the application and cross the application boundary from
outside to inside. The data generally are added, deleted, or updated in one
or more files internal to the application (i.e., internal logical files). A com
mon example of an El would be a screen that allows the user to input infor
mation using a keyboard and a mouse. Data can, however, pass through the

application boundary from other applications. For example, a sales system
may need a customer's current balance from an accounts receivable system.
Based on its complexity, in terms of the number of internal files referenced,

SOFTWARE ENGINEERING METRIS AND APPROACHES 135

number of data elements (i.e., fields) included, and any other human factors, each
El is classified as low, average, or high.

« External Output (EG)}-Similarly, an EO is a process or transaction that
allows data to exit the application boundary. Examples of EOs include
reports, confirmation messages, derivedalculated totals, and graphs or
charts. This data could go to screqmsjters, or other applications. After
the number of EOs are counted, they are rated based on their complexity,
like the external inputs (EI).

» External Inquiry (EQ>-An EQ is a process oransaction that includes a
combination of inputs and outputs for retrieving data from either the inter
nal files or from files external to the application. EQs do not update or
change any data stored in a file. Ty read this information. Queries
with different processing logic or a different input or output format are
counted as a single EQ. Once the EQs are identified, they are classified
based on their complexity as low, average, or high, according to the number
of files referenced and number of data elements included in the query.

Once all of the ILFs, EIFs, Els, EOsdaaQs, are counted and their relative com-
plexities rated, an Unadjusted Function Point (UAF) count is determined. For exam-
ple, let's say that after reviewing an kgation system, the following was determined:

e ILF: 3 Low, 2 Average, 1 Complex

« EIF: 2 Average

e El 3 Low, 5 Average, 4 Complex

« EO:4 Low, 2 Average, 1 Complex

 EQ:2Low, 5 Average, 3 Complex
Using Table 6.1, the (UAF) value is calculated.

The next step in function point analysis is to compute a Value Adjustment Factor

(VAF). The VAF is based on the Degrees Influence (DI), often called the
Processing Complexity Adjustment (PCAhd is derived from the fourteen General

External External External
inputs outputs inquiries

i3]

External
inputs
Application boundary v External application
External

Internal outputs External
SO e e interface

logical

files
(ELF)

files

(ILF) External

inquiries

Figure 6.5 The Application Boundary for Function Point Analysis

136

CHAPTER 6 / THE WORK BREAKDOWN STRUCTURE AND PROJECT ESTIMATION

Table 6.1 Computing UAF

Complexity

Low Average High Total
Internal Logical Files (ILF) =21 2x10=20 % 18=15 56
External Interface (EIF) e 2xT7=14 L= b4
External Input (EI) I3x3=9 S5x4=20 4x6=24 53
External Output (EO) 4x4=16 2x5=10 Il =17 33

External Inquiry (EQ) 2%3=6 S5%x4=20 Ix6=18 4

Total Unadjusted Function Points (UAF) 200

Systems Characteristics (GSC) shown in &&bP. To determine the total DI, each
GSC is rated based on the following scale from O to 5:

0 =not present or no influence
e 1 =incidental influence

e 2 =moderate influence

* 3 =average influence

» 4 =significant influence

» 5 =strong influence

Continuing with our example, let's say that after reviewing the application, the
degrees of influence shown in Table 6.2 were determined to produce 210 total
adjusted function points (TAFP). So what do we do with the total adjusted function
point number? Once a total adjusted funcpomt count is calculated, the function
point count can be transformed into deygnent estimates. The first approach
focuses on productivity—i.e., a persaych as a programmer, can produce a
certain number of function points in avgn amount of time, such as in a day, a
week, or a month. Once again, creating a repository of function point information
and other metrics allows an organization to compare various projects andtsuppo
more realistic estimates.

The second approach focuses on converting the function point count into an
equivalent number of lines of code. Gantng with our example, we can determine
how many lines of code will be requiréat several different programming languages.
Table 6.3 provides an example that approximates the number of lines of code per
function point for some of the more popuEpogramming languages. As you can see,
the number of lines of code depends @ pghogramming language. An application or
module that has 210 total unadjusted function points would require, for example,
134,440 lines of code if programmed in machine language, but only 6,090 lines of
code using Visual Basic 5. Again, thesgneates not only provide an estimate for the
size of the application, but also for the complexity of the application.

In addition, T. Capers Jones has condlietdensive research and has come up with
a technique callebackfiring, which allows direct conversion from an application's
source code to an equivalent function pamtint. Individual programming styles can
create variation in the number of LOG so the accuracy of backfiring is not very high. It
can, however, provide an easy way to @eafunction point inventory of an organiza-
tion's project portfolio iLOG are readily available.

SOFTWARE ENGINEERING METRIS AND APPROACHES 137
- : . : . COCOMO
Table 6.2 GSC and Total Adjusted Function Point
COCOMO is an acronym for

General System Characteristic

Degree of Influence

Constructive COst MOdel, which was first

Data communications
Distributed data processing
Performance

Heavily used configuration
Transaction rate

On-line data entry

End user efficiency

Online update

Complex processing
Reusability

Installation ease
Operational ease

Multiple sites

Facilitate change

Total degrees of influence (TDI)
VALUE ADJUSTMENT FACTOR

VAF = (TDI * 0.01) + .65

Total adjusted function points =

FP = UAF * VAF

introduced in 1981 by Barry Boehm in his
book Software Engineering Economics.
Based on LOG estimates, it is used to estimate
cost, effort, and schedule (Boehm 1981). The
original COCOMO model received
widespread interest and is an open model,
meaning that all of the underlying equations,
assumptions, definitions, and so on are
available to the public. The original COCOMO
model was based on a study of 63 projects and
is a hierarchy of estimation models.

COCOMO is an example of a parametric
model because it uses dependent variables,
such as cost or duration, based upon one or
more independent variables that are
quantitative indices of performance and/or
physical attributes of the system. Often,
parametric models can be refined and
fine-tuned for specific projects or projects
within specific industries (Rad 2002).

Estimating with COC®IO begins with
determining the type of project to be estimated. Project types can be classified as:

WA W WwW s D W

= = W W W

40
VAF = (40 * 01) + .65 =1.05

FP=200*1.05=210

» Organic—These are routine projects where the technology, processes, and
people are expected to all work together smoothly. One may view these
types of projects as the easy projects where few problems are expected.

Table 6.3 Function Point Conversion to LOC

Average Souvce LOC per Average Source LOC for

Language Function Point a 210 FP Application
Access 38 7.980

Basic 107 22,470

c 128 26,880

C++ 53 11,130
COBOL 107 22 470

Delphi 29 6.090

Java 53 11.130
Machine Language 640 134,440

Visual Basic 5 29

6,090

SOURCE http://www.spr.com

138 CHAPTER 6/ THE WORK BREAKDOW STRUCTURE AND PROJECT ESTIMATION

® Embedded—An embedded project is viewed as a challenging project. For |

example, it may be a system to support a new business process or an area
that is new ground for the organization. The people may be less experi-
enced, and the processes and technology may be less mature.

B Semi-Detached—If organic projects are viewed as easy and embedded as
difficult or challenging, then semi-detached fall somewhere in the middle.
These projects may not be simple and straightforward, but the organization
feels confident that its processes, people, and technology in place are ade-
quate to meet the challenge.

The basic COCOMO model uses an equation for estimating the number of per-
son-months needed for each of these projects types. A person-month can be thought
of as a one-month effort by one person. In COCOMO, a person-month is defined as
152 hours. Once the project type is defined, the level of effort, in terms of person-
months, can be determined using the appropriate equation:

® Organic: Person-Months = 2.4 x KDSI!.05
® Semi-Detached: Person-Months = 3.0 x KDS][!.12

® Embedded: Person-Months = 3.6 x KDS]!.20
KDSI = thousands of delivered source instructions, i.e., LOC

Let’s suppose that we are developing an application that we estimated to have 200
total adjusted function points. Using Table 6.3, we can convert function points into
lines of code. If our application is going to be developed in Java, this would require
approximately 10,600 lines of code. If we assume that our project will be of medium
difficulty, then the semi-detached equation would be appropriate.

Person-Months = 3.0 x KDSI!.12
=3.0 x(10.6)112
=42.21

In summary, our 200 function point project will require about 10,600 lines of
code and take just over 42.21 person months to complete. Once we have estimated the
effort for our project, we can determine how many people will be required.
Subsequently, this will determine the time estimate and associated cost for develop-
ing our application system.

As Frederick Brooks (1995) points out, people and months are not interchange-
able. More people complicate communication and slow things down. Therefore, dura-
tion is determined using one of the following formulas:

® Organic: Duration = 2,5 x Effort0.38
® Semi-Detached: Duration = 2.5 x Effort?.35
® Embedded: Duration = 2.5 x Effort?-32

Since our semi-detached project requires 42.21 person-months, the duration of
development will be:

Duration = 2.5 x Effort035
=2.5 % (42.21)035
= 9.26 months

Subsequently, we can determine how many people should be assigned to the
development effort:

SOFTWARE ENGINEERING METRICS AND APPROACHES 139

People Required = Effort + Duration
=42.21+9.26
=455

Therefore, we need 4.55 people working on the project. Okay, so it is pretty tough
getting .55 of a person, so we probably will need either four or five people. One could
even make an argument that four full-time people and 1 part-time person will be
needed for this project.

The above example shows how the basic COCOMO model can be used. There
are, however, two other COCOMO models: Intermediate COCOMO and Advanced
COCOMO. Intermediate COCOMO estimates the software development effort as a
function of size and a set of fifteen subjective cost drivers that include attributes of
the end product, the computer used, the personnel staffing, and the project environ-
ment. In addition, Advanced COCOMO includes all of the characteristics of
Intermediate COCOMO but with an assessment of the cost driver’s impact over four
phases of development: Product Design, Detailed Design, Coding/Testing, and
[ntegration/Testing.

Today, COCOMO II is available and is more suited for the types of projects being
developed using 4GLs or other tools like Visual Basic, Delphi, or Power Builder,
However, for more traditional projects using a 3GL, the original COCOMO model
can still provide good estimates and is often referred to as COCOMO 81.

Another estimating model that you should be aware of is SLIM, which was
developed in the late 1970s by Larry Putnam of Quantitative Software
Management (Putnam 1978; Putnam and Fitzsimmons 1979). Like COCOMO,
SLIM uses LOC to estimate the project’s size and a series of twenty-two questions
to calibrate the model.

Heuristics

Heuristics are rules of thumb. Heuristic approashrely on the fact that the same
basic activities will be required for a typical software development project and these
activities will require a predictable percegdaof the overall effort (Roetzheim and
Beasley 1998). For example, when estimating the schedule for a software develop-
ment task one may, based on previous pmjessign a percentage of the total effort

as follows:

* 30 percent Planning

e 20 percent Coding

e 25 percent Component Testing

e 25 percent System Testing

In his book,Estimating Software Cost§, Capers Jones provides a number of

heuristics or rules of thumb for estimatsgftware projects Isad on function points.
Some of these rules include:

» Function points raised to the 1.15 gopredict approximate page counts
for paper documents associated with software projects.

« Creeping user requirements will grow at an average rate of 2 percent per
month from the design through coding phases.

» Function points raised to the 1.2 power predict the approximate number of
test cases created.

140 CHAPTER 6/ THE WORK BREAKDOW STRUCTURE AND PROJECT ESTIMATION

« Function points raised to the 1.25 @opredict the approximate defect
potential for new software projects.

» Each software test step will find and remove 30 percent of the bugs that are

present.

» Each formal design inspection will find and remove 65 percent of the bugs
present.

« Each formal code inspection will find and remove 60 percent of the bugs
present.

* Maintenance programmers can repair eight bugs per staff month.

* Function points raised to the 0.4 popredict the approximate develop
ment schedule in calendar months.

* Function points divided by 150 predict the approximate number of person
nel required for the application.

* Function points divided by 750 predict the approximate number of mainte
nance personnel required to keep the application updated.

« Multiply software development schedules by the number of personnel to
predict the approximate number of staff months of effort.

Jones makes an important observationefof thumb are easy, but they are not
accurate. As Garmus and Herron point out (Garmus and Herron 1996):

Accurate estimating is a functiarfi applying a process and recogniz-
ing that effort must be expended in creating a baseline of experience
that will allow for increased accacy of that process. Estimating
does not require a crystal ball; it simply requires commitment. (142)

Automated Estimating Tools

A number of automated tools can be uBdccost, schedule, and resource estimation.
These tools include spreadsheets, project management tools, database managen
systems, software cost estimating, and process or methodology tools. Many of the:s
tools not only help estimate, but also allow the organization to create a database
repository of past projects. In fact, it was found that estimates usually have an acct
racy of between 5 and 10 percent when historical data was accurate. Moreover, aut
mated estimating tools are generally mooeservative when they are not accurate,
as opposed to manual methods that are generally optimistic (Jones 1998).

As the complexity of software development projects increases, the market for
software estimation tools will increase as well. Some of the automated tools availabls
include COCOMO II, SLIM, CHECKPOIN;TKnowledge Plan, and Cost*Xpert.
Research suggests that projects that useraf@stimating tool have a better chance of
delivering a system that is on time and within budget.

WHAT ISTHE BEST WAY TO ESTIMATE IT PROJECTS?

Unfortunately, no single method or tool is best for accurately estimating IT projects. It
may be a good idea to use more than one technique for estimating. You will, howevel
very likely have two different estimates.

If the estimates from different estimatirghniques are fairly close, then you can
average them with a fairlyigh degree of confidence. If the estimates vary widely,

CHAPTER SUMMARY 141

then you should probably be skeptical of one or both estimates and review the data
that was collected (Roetzheim and Beasley 1998).

Your initial estimates probably will have be adjusted up or down based on past
experience or data from past projects. Many times, however, the initial estimates are
negotiated by upper management or the client. For example, you may come up with
an estimate that the project will take twelve months and cost $1.2 million. Unless you
can substantiate your estimates, upper management may counter and mandate that the
project be completed in eight months and cost no more than $750,000. This counter
may be a result of a real business need (i.e., they really do need it in eight months and
can not spend more than $750,000) or their belief that you inflated the schedule and
budget and some of the fat can be trimmed from your estimates. As a result, you may
end up working on a death march project.

It basically comes down to whether the project can or cannot be delivered earlier. It
is up to the project manager not only to arrive at an estimate, but also to support the
estimates. Otherwise, the project's shtile and budget can be very unrealistic.
Working long hours and under intense pressure will surely have a negative impact on
the project team. A project manager's team must always come first, and protecting
them by having a realistic deadline andcqadste resources as defined by the project's

schedule and budget is the first step.

CHAPTER SUMMARY

Although defining a project's scope in terms of
project-oriented and product-oriented deliverables
provides an idea of what must be done, the project
manager and team must still develop a tactical approach
that determines what needs to be done, when it will be
done, who will do the work, and how long will it take.
The work breakdown structure (WBS) is an important
and useful tool for bridging the project's scope with the
detailed project plan. More specifically, the WBS
provides a logical hierarchy that decomposes the project
scope into work packages. Work packages focus on a
particular deliverable and include the activities required
to produce the deliverable. In addition, milestones
provide a mechanism for ensuring that project work is
not only done, but also done right.

Once the work packagesveabeen identified, pro-
jected durations must be made. Instead of
guesstimat-ing, or guessing at the estimates, a number of
project estimation methods and techniques were
introduced. Traditional approaches to estimating
include:

« The Delphi TechniqueThis approach involves mul
tiple experts who arrive atconsensus after a series
of round-robin sessions in which information and
opinions are anonymougbyovided to each expert.
Time-Boxing—A technique where boxof time is
allocated to a specific tadkor example, a team may
be given two weeks (and only two weeks) to develop
a prototype of a user interface.

¢ Top-Down Estimating-This system involves estimat
ing a schedule or budget based upon how long the proj
ect or an activity should take or how much it should
cost. For example, the project manager may be told
that the project must be completed in six months. The
project manager then schedules or estimates the proj
ect and activities backwards so that the total duration
of the activities adds up to six months or less. Although
this approach may be usetien competitive necessity
is an issue, unrealistic expaiEins can lead to projects
with very little chance of meeting their objectives.

Bottom-Up Estimating-Most real-world estimating
uses this approach. TH¢BS outlines the activities
that must be completed, and an estimate is made for
each of the activities. Theriaus durations are then
added together to determine the total duration of the
project. Estimates may be analogous to other proj
ects or based on previous experience. These esti
mates are also a function of the activity itself (e.g.,
degree of complexity, structuredness, etc.), the
resources assigned (e.g., a person's knowledge,
expertise, enthusiasm, etc.) and support (e.g., tech
nology, tools, work environment, etc.).

In addition, several software engineering

approaches were introducéat estimating the software
development effort. These included:

« Lines of Code (LOG}-Although counting or trying
to estimate the amount of code that must be written
may appear intuitively phsing, there are a number

142 CHAPTER 6 / THE WORK BREAKDOW STRUCTURE AN

of deficiencies with thisapproach. The number of
LOG may provide an idea tie size of a project, but

it does not consider the complexity, constraints, or
influencers that must be taken into accobinhction
Points—Function points were introduced by Allen
Albrecht of IBM in 1979. They are synthetic
measures that take into account the functionality and
complexity of software. Because function points are
independent of the technology or programming
language used, one application system can
compared with another. COCOMG—The)
Constructive COst MOdel was introduced by Barry Wil

D PROJECT ESTIMATION

calculated, a similar prodare using another model can
estimate the project's duration. .
Heuristics—Heuristics are rules of thumb that are
applied to estimating a software project. The basic
premise is that the same activities will be repeated on
most projects. This approach may include assigning a
specific percentage of the project schedule to specific
activities or using other metrics such as function points.

Estimating the effort and duration of an IT project

is not an exact science. No single method or technique

| provide 100 percent accuracy. Using a combina-

Boehm in 1981. Estimates for a software systerrtion of approaches may help triangulate an estimate,
effort are determined by an equation based upon tiwhich provides a confidence greater than when

project's complexity. More specifically, a softwaremerely guessing or using a single estimation tech-
project may be classified asganic (relatively simple nique. To be realistic, estimates should be revised as

and straightforward), embedded (difficult),

Or understanding of the project increases and new infor-

semi-detached (somewhere in the middle). Once tmation acquired.

effort, in terms of person-months, is

WEB SITESTO VISIT

www.softwaremetrics.com: Articles and examples
for learning more about function point analysis
www.spr.com: The site for Software Productivity
Research. Capers Jones articles and information about
software estimation and planning tools for IT projects

REVIEW QUESTIONS

1. Describe the PMBOK area of project time manage 13.
ment.

2. What is a WBS? What purpose does it serve? 14.

3. Discuss why a project's scope must be tied to th 15,
WBS.

4. What is a work package?
5. What is the difference between a deliverable and 16.

milestone?
6. What purpose do milestones serve? 17.
7. What are some advantages of including milestone

in the WBS? 18.

8. What is a crux? Why should the project manage

and project team identifjne cruxes of a project? 19.

9. What is the proper level of detail fora WBS?

10. Why should the WBS be deliverable-oriented? 20.

11. Explain why people who do the work on a project
should be involved in developing the project plan?

12. How does the concept of knowledge managemer:..
support the development of the project plan?

www.ifpug.org: International Function Point Users
Group

sunset.usc.edu/research/COCOMOIl/index.html:
The latest version and information about COCOMO

How is estimating an IT project different from esti
mating a construction project?

What makes estimating an IT project challenging?
What is guesstimating? Why should a project man
ager not rely on this technique for estimating a
project?

Describe the potential problems associated with
providing an off-the-record estimate?

What is the Delphi technique? When would it be an
appropriate estimating technique for an IT project?
What is time boxing? What are some advantages
and disadvantages of time boxing project activities?
Describe top-down estimating. What are some advan
tages and disadvantages of top-down estimating?
Describe bottom-up estimating. What are some advan
tages and disadvantages of bottom-up estimating?

21. What is a death march project? What situations in

project planning can lead to a death march project?

26.

22. Discuss why adding people to a project that is28,

already behind schedule can make it later?
23. What is software engineering?

24. Why is counting lines of code (LOG) a popular 30.

method for estimating and tracking programmer

productivity? What are some problems associatec

with this method?

25. What is a function point? What advantages do func

tion points have over counting lines of code?

26. How can function point analysis be used to hel;32.

manage scope creep?

27. What is backfiring? How could an organization use

backfiring to improve the accuracy of estimating IT
projects?

M EXTEND YOUR KNOWLEDGE

1. Develop a deliverable-oriented WBS for a surprise
birthday party for a friend or relative (perhaps even
your instructor?). Be sure to define a measure of
success for this party and include milestones.

2. Using the following phases as a guide, develop a
WBS for an IT project that will allow Husky Air to
keep track of all scheduled maintenance for its
chartered aircraft. For each phase, define a deliver-
able, several activities or tasks, and a milestone.

1.0 Conceptualize and Initialize Project
2.0 Develop Project Charter and Plan

EXTEND YOUR KNOWLEDGE 143

What is COCOMO?

29. Under the COCOMO model, describe the organic,

semi-detached, and embedded models.

What are heuristics? Discuss some of the advan
tages and disadvantages of using heuristics for esti
mating IT projects.

31. What can lead to inaccurate estimates? How can an

organization improve the accuracy of estimating IT
projects?

What is the impact of consistently estimating too
low? Too high?

5.0 Construction

6.0 Testing

7.0 Implementation

8.0 Close Project

9.0 Evaluate Project Success

Using the information below, complete a function
point analysis in order to use the basic COCOMO
model to estimate the duration and number of peo-
ple needed to develop an application using C++.
Assume that the project is relatively simple and
straightforward and that the project team is familiar

3.0 Analysis with both the problem and technology. You can per-
4.0 Design form the calculations by hand, but feel free to use
an appropriate software tool.
Complexity
Low Average High Total

Internal logical files (ILF) g L 0= selSe
External interface (EIF) e HCOES Sy | ANSClie _x10=__
External input (EI) peloiRiamou] Raomwgigdeed el
External output (EO) e 1 _ =
External inquiry (EQ) _ X3=_ @ x4=_ WO

144 CHAPTER 6 / THE WORK BREAKDOW STRUCTURE AND PROJECT ESTIMATION

Complexity General System Characteristic Degree of Influence

Low Average High Data communications 2

Internal logical 4 o) 0 Distributed data processing 3

files (ILF) Performance 3

External interface 0 I 0 Heavily used configuration 4

(EIF) Transaction rate 4

External input (EI) 3 2 0 On-line data entry 2

External output 5 7 3 End user efficiency 2

(EOQ) Online update 2

External inquiry 2 d 2 Complex processing 2

(EQ Reusability 3

AR St T T e A Installation ease 2

Operational ease 2

Average Source LOC per Multiple sites I

Languapge Function Point Facilitate change I
Basic 107
C 128
C++ 53
COBOL 107
Delphi 29
Java 53

Visual Basic 5 29

BIBLIOGRAPHY

Albrecht, Allan J. 1979Measuring Application Development Pressman, R. S. 2003oftware Engineering: A Practitioner's

Productivity. Proceedings SHARE/GUIDE IBM Applications Approach Boston: McGraw-Hill. Putnam, L. H.1978.

Development Symposium, Monterey, Calif., October 14—17, 1979. General Empirical Solution to the Macro
Brooks, F. P. 1995The Mythical Man-Month Reading, Mass.: Software Sizing and Estimating ProblefBEE Transactions

Addison Wesley. Boehm, B. W. 1983%oftware Engineering Software Engineerin§E 4(4): 345-361. Putnam, L. H. and A.
EconomicsEnglewood Fitzsimmons. 1979. Estimating Software Costs.

Cliffs, N.J.: Prentice Hall. Brooks, F. P. 199Bhe Mythical Datamation25(Sept-Nov): 10-12. Rad, P. F. 20020ject
Man-Month. Reading, Mass.: Estimating and Cost Manageme¥itenna,

Addison Wesley. Garmus, D. and D. Herron. 19@6asuring the Va.: Management Concepts, Inc. Roetzheim, W. H. and R. A.
Software Process. Beasley. 1998oftware Project Cost and

Upper Saddle River, N.J.: Premgitlall PTR. Haugan, G. T. 2002. Schedule Estimating: Best Practicefper Saddle River, N.J.:
Efffective Work Breakdown Structur&8enna, Prentice Hall. Royce, W. 1998Software Project

Va.: Management Concepts, Inc. Jones, T. C. Fa§8inating Management: A Unified
Software Costdlew York: McGraw-Hill. Framework Reading, Mass.: Addison Wesley. Yourdon, E. 1999.

Death MarchUpper Saddle River, N.J.: Prentice Hall.

